

The Right Choice for:

Carbon & Graphite Materials

Our carbon and graphite materials offer;

- · Excellent chemical compatibility
- Low coefficient of expansion
 - High conductivity
 - Low wear rates for seals and bearings running in liquids
 - These grades are able to withstand higher temperatures

Advanced Polymers

Our advanced polymers, are a range of modified PTFE materials able to operate at higher temperatures and pressures than traditional filled PTFEs in a broad range of pump, compressor and valve applications.

- This range covers both lubricated and non lubricated applications in a multitude of gases
 - Their low porosity and lubricious nature lend themselves perfectly to sealing applications
 - With the addition of various fillers higher loads and speeds can be achieved for bearing applications in chemical pumps resulting in greater dimensional stability and lower wear rates
 - For dry gas/cryogenic applications please refer the ACM700 brochure

Polyimide Materials

Polyimide materials unlike our carbon and graphite based materials have

- Extremely low electrical and thermal conductivity
- Ideal for higher temperature sealing and bearing applications
 - Can also be used in dry, wet or mixed running conditions
 - These materials also exhibit good friction and wear properties
 - Excellent impact resistance

Resin Bonded Materials

Resin bonded materials offer,

- Excellent dry running characteristics
 - For wet running conditions they should be used at lower operating speeds/loads
 - Good thermal conductivity
 - Good chemical resistance
 - Low co-efficient of expansion
 - Suitable for press to size components for higher volume production runs

Grade Application Guide - Carbon & Graphite

.....

a drado	<u>.</u>	DENGTY SON'S	SHORE HARDNES	TRANSVERISENG TRANSVESTIBENG BENDIN	NSS/ITY %	D. TEMP. 'C				
	Carbo graphita	\ 14	\rightarrow	${ o}$	\rightarrow	1 350	_			
Me508	Carbographite		1.66	80 \	400 \ <	1.25% \ 350				
Impreg Me509	Carbographite Impregnated		1.75	80	410	<0.25% 2	100			
Me 501	Resin Bond	kd \	1.70	55	600	<1%	200			
Me502	Resin Bon		1.65	58	650	\ d% \	200			
Me511	Resin Bo		1.69	65	\ 600	\ <bi \<="" td=""><td>190</td></bi>	190			
Me513	ightarrow	Banded	1.68	\rightarrow	\rightarrow	\rightarrow	200			
Me514		Banded	1.7	$\overline{}$	${\overline{}}$	50 \ <1%	200			
Me51B	$\overline{}$	dn Bondad	-	1.7	$\overline{-}$	430 \ <19				
Me523 Me52	$\overline{}$	esin Bondad	$\overline{}$	127	<u>₹</u>	$\overline{}$	1% 180			
_	1700	Ras in Bondad	$\overline{}$	195	74 65	45	<1% 190 <1% 220			
_	M722	Proprietary bian Polymide		14	75	110	<0.5% 360			
	CM740	Polylmide		14	\ "	530	<0.5% 380			
	ACM751	Polylmide		14	\rightarrow	\rightarrow	<0.5% 400			
	ACM789	Polylmida	•	o	${ullet}$	72 540	<0.5% \ 425			
	1000	_			,					

Grade Application Guide - PTFE Filled

м					\rightarrow	_			\sim					_	_	_	_	-	_			
	ACM521	\r	TEC	nbogr	aphite \	2.0)5 \	3	15 \	\	16	١	29 '	\ 3	5%	\ ⊲	.25%	١.	200	N		
	ACM52	2 \	PTIE	Carbo	graphite	\ 2	201	\setminus	33	T	16	L	11.9	V	19%	$\mathbf{\Lambda}$	«O.59	٠\	200			
ď	ACMS	23	\PIF	Carb	ographite	T	2.06	T	35	T		\neg	12.5	\sim		\neg		\neg	20	0		
ŧ	ACM525 PTFE Carbographi ACM527 PTFE Carbographi		bographit	• /	2.03		30	١ (18	o \	18.	.7 \	\ 1	% \	\ <#		\ 2	100				
٥			arbograph	alta 2		14	\ ·	35	$\overline{}$	14	$\overline{}$	9.3	ν,	00%	V٩	0.259	٠\	210				
	A	ACM528 Glass ACM529 Glass				2.2		26 \		_		1	22	_		7		- /	180			
				S	\ 2		2.28		35	• T	17	$\overline{}$	5.4	5 \	200%		<0.	25%	180	180		
		ACM 531 Glass, MOS					7	2.30		\ 35		\		7.3		\		\		180		
		ACM552 Bronze, MC				15,	o		3.87		30	au	16	11.5		909		7	d0.25	*\	190	
ACM553 PTFE Car					bographite		2.0		╮	40	╮		╮	6.0					$\neg au$	200	1	
		ACM560			GlassC	GlassCu			2.3	<u>ة</u>	25	: 1	15	٠ ١	11.3		200%		₹0.25%		190	À
١		ACM579 Braz			Branz	ze, Mos _a , PPSO ₂			3,61		\	33	17		13.2		15%		₹0.25%		19	,
					_		_	_	•		•		•		_		_		_		•	

